Internet Engineering Task Force (IETF) M. Nottingham

Request for Comments. 7807 Akamai
Category: Standards Track E. Wilde
ISSN: 2070-1721 March 2016

Problem Detailsfor HTTP APIs

Abstract

This document defines a " problem detail” as away to carry machine-readable details of errorsinaHTTP
response to avoid the need to define new error response formats for HTTP APIs.

Status of thisMemo

Thisis an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of

the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standardsis available in Section 2 of RFC
5741".

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at http://www.rfc-editor.org/info/rfc7807°.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Lega Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review

these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

1 https://www.rfc-editor.org/rfc/rfc5741.html#section-2
2 http://www.rfc-editor.org/info/rfc7807
3 http://trustee.ietf.org/license-info

https://www.rfc-editor.org/rfc/rfc5741.html#section-2
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
http://www.rfc-editor.org/info/rfc7807
http://trustee.ietf.org/license-info

RFC 7807 Problem Details March 2016

Table of Contents

I oo 11 ot o o 1O OSSOSO 3
2 REGUITEIMENES. ...ttt b et b et b e e b e e b e se bt se e bt s e e bt s e e bt e Eehe e E e Rt e b e Re e b e st e b et e b e e e b e neeb e e ebese e bt nnebe st nenrne 4
3 The Problem DetailS JSON ODJECL.......c.coiiiiiiiie ettt e s e et ae b b saesbesbe e 5
3.1 Members of a Problem DetailS ODJECL..........couecieiiiricise ettt sr et e e e e e e e eseeneenens 5
T g (=050 TN\ 0 0 6
4 DEfiNING NEW PrODIEM TYPES. ...ttt ettt sttt b et b b e se b s e b e sa bt seebesaebe s b e st eb et ebe e ebeneebe e 7
R = 0 o =TSP O PSSR 7
4.2 Predefined ProbDIEM TYPES... oottt sttt sttt sttt s e e e e e e aeeseeaesaesteebesaeseestesteseensenseneeneenens 8
IS = o U] YA 0] = Lo (== 4 o LS 9
LSRN N TN @0 g 1= o [=L o] RPN 10
6.1 apPliCAtiON/PrODIEMH SON. ...ttt b e a e s b e be bt b et se e se et e e e e e seeaeeaeebeebesbesaesbenbenes 10
(ST o o) FTor= 1Ko 0T o] (0] o] 1= 0 05 5t 1o TSR 11
A = 1= 0SSP 13
A8 R N[0 = (VLSRR S = = 13
7.2 INfOrMAtiVE REFEIENCES......cve ettt ettt e s b e e e e s heete s beeabesbe et e eteenbeeaeeateeneesaeensesreesesanas 13
Appendix A HTTP Problems and XIML ...ttt st 15
Appendix B Using Problem Details with Other FOrmats..........coovvivieierinerereeieee e eseenes 17
F U gL R o (o =SS 19

Nottingham & Wilde Standards Track [Page 2]

RFC 7807 Problem Details March 2016

1. Introduction

HTTP [RFC7230] status codes are sometimes not sufficient to convey enough information about an error to be
helpful. While humans behind Web browsers can be informed about the nature of the problem with an HTML
[W3C.REC-html5-20141028] response body, non-human consumers of so-called "HTTP APIs" are usualy not.

This specification defines simple JSON [RFC7159] and XML [W3C.REC-xml-20081126] document formats
to suit this purpose. They are designed to be reused by HTTP APIs, which can identify distinct "problem types’
specific to their needs.

Thus, API clients can be informed of both the high-level error class (using the status code) and the finer-
grained details of the problem (using one of these formats).

For example, consider aresponse that indicates that the client's account doesn't have enough credit. The 403
Forbidden status code might be deemed most appropriate to use, asit will inform HTTP-generic software (such
asclient libraries, caches, and proxies) of the general semantics of the response.

However, that doesn't give the API client enough information about why the request was forbidden, the
applicable account balance, or how to correct the problem. If these details are included in the response body in
amachine-readable format, the client can treat it appropriately; for example, triggering atransfer of more credit
into the account.

This specification does this by identifying a specific type of problem (e.g., "out of credit") with aURI
[RFC3986]; HTTP APIs can do this by nominating new URIs under their control, or by reusing existing ones.

Additionally, problem details can contain other information, such as a URI that identifies the specific
occurrence of the problem (effectively giving an identifier to the concept "The time Joe didn't have enough
credit last Thursday"), which can be useful for support or forensic purposes.

The data model for problem detailsis a JSON [RFC7159] object; when formatted as a JSON document, it uses
the "application/problem+json™ media type. Appendix A defines how to express them in an equivalent XML
format, which uses the "application/problem+xml" media type.

Note that problem details are (naturally) not the only way to convey the details of a problem in HTTP; if the
responseis still arepresentation of aresource, for example, it's often preferable to accommodate describing the
relevant details in that application's format. Likewise, in many situations, there is an appropriate HTTP status
code that does not require extra detail to be conveyed.

Instead, the aim of this specification is to define common error formats for those applications that need one,
so that they aren't required to define their own, or worse, tempted to redefine the semantics of existing HTTP
status codes. Even if an application chooses not to use it to convey errors, reviewing its design can help guide
the design decisions faced when conveying errorsin an existing format.

Nottingham & Wilde Standards Track [Page 3]

RFC 7807 Problem Details March 2016

2. Requirements

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY™", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

Nottingham & Wilde Standards Track

[Page 4]

RFC 7807 Problem Details March 2016

3. TheProblem Details JSON Object

The canonical model for problem detailsis a JSON [RFC7159] object.
When serialized as a JISON document, that format isidentified with the "application/problem+json" media type.
For example, an HTTP response carrying JSON problem details:

HTTP/ 1.1 403 Forbi dden
Cont ent - Type: appli cation/ probl emtj son
Cont ent - Language: en

{
"type": "https://exanpl e.com probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 30, but that costs 50.",
"instance": "/account/ 12345/ nsgs/ abc",

"bal ance": 30,
"accounts": ["/account/12345",
"/account/67890"]

}

Here, the out-of-credit problem (identified by itstype URI) indicates the reason for the 403 in "title", gives a
reference for the specific problem occurrence with "instance", gives occurrence-specific detailsin "detail", and
adds two extensions; "balance" conveys the account's balance, and "accounts' gives links where the account
can be topped up.

The ability to convey problem-specific extensions allows more than one problem to be conveyed. For example:

HTTP/ 1.1 400 Bad Request
Cont ent - Type: applicati on/ probl emtj son
Cont ent - Language: en

{
"type": "https://exanple.net/validation-error",
"title": "Your request paraneters didn't validate.",
"invalid-paranms": [{
"nanme":. "age",
"reason": "nust be a positive integer"
I
{
"name": "color",
"reason": "nust be 'green', 'red' or 'blue' "}

}

Note that this requires each of the subproblems to be similar enough to use the same HTTP status code. If they
do not, the 207 (Multi-Status) [RFC4918] code could be used to encapsulate multiple status messages.

3.1. Membersof a Problem Details Object

A problem details object can have the following members:

o "type" (string) - A URI reference [RFC3986] that identifies the problem type. This specification encourages
that, when dereferenced, it provide human-readable documentation for the problem type (e.g., using HTML
[W3C.REC-htmI5-20141028]). When this member is not present, its value is assumed to be "about:blank”.

Nottingham & Wilde Standards Track [Page 5]

RFC 7807 Problem Details March 2016

« "title" (string) - A short, human-readable summary of the problem type. It SHOULD NOT change from
occurrence to occurrence of the problem, except for purposes of localization (e.g., using proactive content
negotiation; see [RFC7231], Section 3.4).

e "status' (number) - The HTTP status code ([RFC7231], Section 6) generated by the origin server for this
occurrence of the problem.

e "detail" (string) - A human-readable explanation specific to this occurrence of the problem.

* "instance" (string) - A URI reference that identifies the specific occurrence of the problem. It may or may
not yield further information if dereferenced.

Consumers MUST use the "type" string as the primary identifier for the problem type; the "title" string is
advisory and included only for users who are not aware of the semantics of the URI and do not have the ability
to discover them (e.g., offline log analysis). Consumers SHOULD NOT automatically dereference the type
URI.

The "status' member, if present, is only advisory; it conveys the HTTP status code used for the convenience of
the consumer. Generators MUST use the same status code in the actual HTTP response, to assure that generic
HTTP software that does not understand this format still behaves correctly. See Section 5 for further caveats
regarding its use.

Consumers can use the status member to determine what the original status code used by the generator was, in
cases where it has been changed (e.g., by an intermediary or cache), and when message bodies persist without
HTTP information. Generic HT TP software will still use the HTTP status code.

The "detail" member, if present, ought to focus on helping the client correct the problem, rather than giving
debugging information.

Consumers SHOULD NOT parse the "detail" member for information; extensions are more suitable and less
error-prone ways to obtain such information.

Note that both "type" and "instance" accept relative URIS; this means that they must be resolved relative to the
document's base URI, as per [RFC3986], Section 5.

3.2. Extension Members
Problem type definitions MAY extend the problem details object with additional members.

For example, our "out of credit" problem above defines two such extensions -- "balance" and "accounts" to
convey additional, problem-specific information.

Clients consuming problem details MUST ignore any such extensions that they don't recognize; this allows
problem types to evolve and include additional information in the future.

Note that because extensions are effectively put into a namespace by the problem type, it is not possible to
define new "standard" members without defining a new media type.

Nottingham & Wilde Standards Track [Page 6]

https://www.rfc-editor.org/rfc/rfc7231.html#section-3.4
https://www.rfc-editor.org/rfc/rfc7231.html#section-6
https://www.rfc-editor.org/rfc/rfc3986.html#section-5

RFC 7807 Problem Details March 2016

4. Defining New Problem Types

When an HTTP API needs to define aresponse that indicates an error condition, it might be appropriate to do
so by defining a new problem type.

Before doing so, it'simportant to understand what they are good for, and what's better |eft to other mechanisms.

Problem details are not a debugging tool for the underlying implementation; rather, they are away to expose
greater detail about the HTTP interface itself. Designers of new problem types need to carefully consider
the Security Considerations (Section 5), in particular, the risk of exposing attack vectors by exposing
implementation internal s through error messages.

Likewise, truly generic problems -- i.e., conditions that could potentially apply to any resource on the Web --
are usually better expressed as plain status codes. For example, a "write access disallowed" problem is probably
unnecessary, since a 403 Forbidden status code in response to a PUT request is self-explanatory.

Finally, an application might have a more appropriate way to carry an error in aformat that it already defines.
Problem details are intended to avoid the necessity of establishing new "fault" or "error" document formats, not
to replace existing domain-specific formats.

That said, it is possible to add support for problem details to existing HTTP APIsusing HT TP content
negotiation (e.g., using the Accept request header to indicate a preference for this format; see [RFC7231],
Section 5.3.2).

New problem type definitions MUST document:

1. atype URI (typically, with the "http" or "https' scheme),

2. atitlethat appropriately describesit (think short), and

3. the HTTP status code for it to be used with.

Problem type definitions MAY specify the use of the Retry-After response header ([RFC7231], Section 7.1.3)
in appropriate circumstances.

A problem'stype URI SHOULD resolve to HTML [W3C.REC-html5-20141028] documentation that explains
how to resolve the problem.

A problem type definition MAY specify additional members on the problem details object. For example, an
extension might use typed links [RFC5988] to another resource that can be used by machines to resolve the
problem.

If such additional members are defined, their names SHOULD start with aletter (ALPHA, as per [RFC5234],
Appendix B.1) and SHOULD consist of characters from ALPHA, DIGIT ([RFC5234], Appendix B.1), and
" " (sothat it can be seriaized in formats other than JSON), and they SHOUL D be three characters or longer.

4.1. Example

For example, if you are publishing an HTTP API to your online shopping cart, you might need to indicate that
the user is out of credit (our example from above), and therefore cannot make the purchase.

If you aready have an application-specific format that can accommodate this information, it's probably best
to do that. However, if you don't, you might consider using one of the problem details formats -- JSON if your
API is JSON-based, or XML if it uses that format.

To do so, you might look for an already-defined type URI that suits your purposes. If oneis available, you can
reuse that URI.

If oneisn't available, you could mint and document a new type URI (which ought to be under your control and
stable over time), an appropriate title and the HTTP status code that it will be used with, along with what it
means and how it should be handled.

Nottingham & Wilde Standards Track [Page 7]

https://www.rfc-editor.org/rfc/rfc7231.html#section-5.3.2
https://www.rfc-editor.org/rfc/rfc7231.html#section-7.1.3
https://www.rfc-editor.org/rfc/rfc5234.html#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234.html#appendix-B.1

RFC 7807 Problem Details March 2016

In summary: an instance URI will always identify a specific occurrence of a problem. On the other hand, type
URIs can be reused if an appropriate description of a problem type is already available someplace else, or they
can be created for new problem types.

4.2. Predefined Problem Types

This specification reserves the use of one URI as a problem type:

The "about:blank" URI [RFC6694], when used as a problem type, indicates that the problem has no additional
semantics beyond that of the HTTP status code.

When "about:blank" is used, the title SHOULD be the same as the recommended HTTP status phrase for that
code (e.g., "Not Found" for 404, and so on), athough it MAY be localized to suit client preferences (expressed
with the A ccept-Language request header).

Please note that according to how the "type" member is defined (Section 3.1), the "about:blank” URI isthe
default value for that member. Consequently, any problem details object not carrying an explicit "type"
member implicitly usesthis URI.

Nottingham & Wilde Standards Track [Page §]

RFC 7807 Problem Details March 2016

5. Security Considerations

When defining a new problem type, the information included must be carefully vetted. Likewise, when actually
generating a problem -- however it is serialized -- the details given must a so be scrutinized.

Risks include leaking information that can be exploited to compromise the system, access to the system, or the
privacy of users of the system.

Generators providing links to occurrence information are encouraged to avoid making implementation details
such as a stack dump available through the HTTP interface, since this can expose sensitive details of the server
implementation, its data, and so on.

The "status' member duplicates the information available in the HTTP status code itself, thereby bringing the
possibility of disagreement between the two. Their relative precedence is not clear, since a disagreement might
indicate that (for example) an intermediary has modified the HT TP status code in transit (e.g., by a proxy or
cache).

As such, those defining problem types as well as generators and consumers of problems need to be aware that
generic software (such as proxies, load balancers, firewalls, and virus scanners) are unlikely to know of or
respect the status code conveyed in this member.

Nottingham & Wilde Standards Track [Page 9]

RFC 7807 Problem Details March 2016

6. IANA Considerations

This specification defines two new Internet media types [RFC6838].

6.1. application/problem+json

Type name: applicatio
Subtype name: problem

+json
Required parameters: None
Optiona parameters: None;

unrecogni

parameter

should

be

ignored
Encoding considerations: Same

as

[RFC715¢
Security considerations: See

Section

5

of

this

document
Interoperability considerations: None
Published specification: RFC

7807

(this

document
Applications that use this media type: HTTP
Fragment identifier considerations: Same

as

for

applicatio

json

([RFCT715
Additional information: Deprecate

Magic nul
File exten
Macintost

Person and email address to contact for further information: Mark
Nottinghg
<mnot@n

Intended usage: COMMO!

Restrictions on usage: None.

Author: Mark
Nottinghg
<mnot@n

Change controller: IESG

Nottingham & Wilde Standards Track [Page 10]

RFC 7807 Problem Details March 2016

6.2. application/problem+xml

Type name: applicatio
Subtype name: problem

+xml
Required parameters: None
Optional parameters: None;

unrecogni

parameter

should

be

ignored
Encoding considerations; Same

as

[RFC730:
Security considerations: see

Section

5

of

this

document
Interoperability considerations: None
Published specification: RFC

7807

(this

document
Applications that use this media type: HTTP
Fragment identifier considerations: Same

as

for

applicatio

xml

(as

specified

by

Section

5

of

[RFC730:
Additional information: Deprecate

Magic nul
File exten
M acintost
Person and email address to contact for further information: Mark
Nottingha
<mnot@n

Intended usage: COMMO!
Restrictions on usage: None.

Nottingham & Wilde Standards Track [Page 11]

https://www.rfc-editor.org/rfc/rfc7303.html#section-5
https://www.rfc-editor.org/rfc/rfc7303.html#section-5

RFC 7807

Author:

Change controller:

Nottingham & Wilde

Problem Details

Standards Track

March 2016

[Page 12]

Mark
Nottingha
<mnot@n
IESG

RFC 7807

7. References

7.1. Normative References
[RFC2119]

[RFC3986]

[RFC5234]

[RFC7159]

[RFC7230]

[RFC7231]

[W3C.REC-xml-20081126]

7.2. Informative References
[1SO-19757-2]

[RFC4918]

[RFC5988]

Nottingham & Wilde

Problem Details March 2016

Bradner, S., "Key words for usein RFCs to Indicate
Requirement Levels', BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997, <https.//www.rfc-ed
itor.org/info/rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter,
"Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, DOI 10.17487/RFC3986, January
2005, <https://www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, RFC 5234,
DOI 10.17487/RFC5234, January 2008, <https.//www
.rfc-editor.org/info/rfc5234>.

Bray, T., Ed., "The JavaScript Object Notation
(JSON) Data Interchange Format”, RFC 7159, DOI
10.17487/RFC7159, March 2014, <https://www.rfc-ed
itor.org/info/rfc7159>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Message Syntax and
Routing”, RFC 7230, DOI 10.17487/RFC7230, June
2014, <https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Semantics and
Content", RFC 7231, DOI 10.17487/RFC7231, June
2014, <https://www.rfc-editor.org/info/rfc7231>.

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler,

E., and F. Yergeau, "Extensible Markup L anguage
(XML) 1.0 (Fifth Edition)", W3C Recommendation
REC-xml-20081126, November 2008, <http://mww.w
3.0rg/TR/2008/REC-xml-20081126>.

International Organization for Standardization,
"Information Technology --- Document Schema
Definition Languages (DSDL) --- Part 2: Grammar-
based Validation --- RELAX NG", ISO/IEC 19757-2,
2003.

Dusseault, L., Ed., "HTTP Extensions for Web
Distributed Authoring and Versioning (WebDAV)",
RFC 4918, DOI 10.17487/RFC4918, June 2007,
<https.//www.rfc-editor.org/info/rfc4918>.

Nottingham, M., "Web Linking", RFC 5988, DOI
10.17487/RFC5988, October 2010, <https.//www.rfc-
editor.org/info/rfc5988>.

Standards Track [Page 13]

https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/info/std66
https://dx.doi.org/10.17487/RFC3986
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/info/std68
https://dx.doi.org/10.17487/RFC5234
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://dx.doi.org/10.17487/RFC7159
https://dx.doi.org/10.17487/RFC7159
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7230.html
https://dx.doi.org/10.17487/RFC7230
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://dx.doi.org/10.17487/RFC7231
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/rfc/rfc4918.html
https://www.rfc-editor.org/rfc/rfc4918.html
https://dx.doi.org/10.17487/RFC4918
https://www.rfc-editor.org/rfc/rfc5988.html
https://dx.doi.org/10.17487/RFC5988
https://dx.doi.org/10.17487/RFC5988

RFC 7807

[RFC6694]

[RFC6838]

[RFC7303]

[W3C.REC-html5-20141028]

[W3C.REC-rdfa-core-20130822]

[W3C.REC-xml-stylesheet-20101028]

Nottingham & Wilde

Problem Details March 2016

Moonesamy, S., Ed., "The "about" URI Scheme",
RFC 6694, DOI 10.17487/RFC6694, August 2012,
<https://www.rfc-editor.org/info/rfc6694>.

Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures’, BCP 13,
RFC 6838, DOI 10.17487/RFC6838, January 2013,
<https.//www.rfc-editor.org/info/rfc6838>.

Thompson, H. and C. Lilley, "XML Media Types',
RFC 7303, DOI 10.17487/RFC7303, July 2014,
<https.//www.rfc-editor.org/info/rfc7303>.

Hickson, I., Berjon, R., Faulkner, S, Leithead, T.,
Navara, E., O'Connor, E., and S. Pfeiffer, "HTML5",
W3C Recommendation REC-html5-20141028,
October 2014, <http://www.w3.0rg/TR/2014/REC-ht
ml5-20141028>.

Adida, B., Birbeck, M., McCarron, S., and I.

Herman, "RDFa Core 1.1 - Second Edition", W3C
Recommendation REC-rdfa-core-20130822, August
2013, <http://www.w3.0rg/TR/2013/REC-rdfa-core-2
0130822>.

Clark, J., Pieters, S., and H. Thompson, "Associating
Style Sheets with XML documents 1.0 (Second
Edition)", W3C Recommendation REC-xml-
stylesheet-20101028, October 2010, <http://www.w3.
org/TR/2010/REC-xml-styl esheet-20101028>.

Standards Track [Page 14]

https://www.rfc-editor.org/rfc/rfc6694.html
https://dx.doi.org/10.17487/RFC6694
https://www.rfc-editor.org/rfc/rfc6838.html
https://www.rfc-editor.org/rfc/rfc6838.html
https://www.rfc-editor.org/info/bcp13
https://dx.doi.org/10.17487/RFC6838
https://www.rfc-editor.org/rfc/rfc7303.html
https://dx.doi.org/10.17487/RFC7303
http://www.w3.org/TR/2014/REC-html5-20141028
http://www.w3.org/TR/2013/REC-rdfa-core-20130822
http://www.w3.org/TR/2010/REC-xml-stylesheet-20101028
http://www.w3.org/TR/2010/REC-xml-stylesheet-20101028
http://www.w3.org/TR/2010/REC-xml-stylesheet-20101028

RFC 7807 Problem Details March 2016

Appendix A. HTTP Problemsand XML

Some HTTP-based APIsuse XML [W3C.REC-xml-20081126] as their primary format convention. Such APIs
can express problem details using the format defined in this appendix.

The RELAX NG schema[I1SO-19757-2] for the XML format is as follows. Keep in mind that this schemais
only meant as documentation, and not as a normative schemathat captures all constraints of the XML format.
Also, it would be possible to use other XML schema languages to define asimilar set of constraints (depending
on the features of the chosen schema language).

default nanmespace ns = "urn:ietf:rfc:7807"
start = problem

probl em =
el ement problem{

(elenment type
& elenent title
& elenent detail
& el enent status
& el enent instance

anyNsEl enent

xsd: anyURl }?
xsd:string }?
xsd:string }?

xsd: positivel nteger }7?
xsd: anyURl }?),

Lt Nt Wt Waan Woen

}
anyNsEl enent =
(elenent ns:* { anyNsEl enent | text }
| attribute * { text })*

The mediatype for thisformat is "application/problem+xml".

Extension arrays and objects are serialized into the XML format by considering an element containing a child
or children to represent an object, except for elements that contain only child element(s) named ‘i, which are
considered arrays. For example, the example above appearsin XML asfollows:

HTTP/ 1.1 403 For bi dden
Cont ent - Type: appli cati on/ probl emtxmni
Cont ent - Language: en

<?xm version="1.0" encodi ng="UTF-8"?>
<probl em xm ns="urn:ietf:rfc:7807">
<type>https://exanpl e. com probs/out-of-credit</type>
<title>You do not have enough credit.</title>
<det ai | >Your current balance is 30, but that costs 50.</detail >
<i nst ance>htt ps://exanpl e. net/account/ 12345/ nsgs/ abc</ i nst ance>
<bal ance>30</ bal ance>
<account s>
<i >https://exanpl e. net/account/12345</i >
<i >https://exanpl e. net/account/67890</i >
</ account s>
</ probl en>

Note that this format uses an XML namespace. Thisis primarily to allow embedding it into other XML -based
formats; it does not imply that it can or should be extended with elements or attributes in other namespaces.

Nottingham & Wilde Standards Track [Page 15]

RFC 7807 Problem Details March 2016

The RELAX NG schema explicitly only alows elements from the one namespace used in the XML format.
Any extension arrays and objects MUST be serialized into XML markup using only that namespace.

When using the XML format, it is possible to embed an XML processing instruction in the XML that instructs
clientsto transform the XML, using the referenced XSLT code [W3C.REC-xml-stylesheet-20101028]. If this
code istransforming the XML into (X)HTML, then it is possible to serve the XML format, and yet have clients
capable of performing the transformation display human-friendly (X)HTML that is rendered and displayed at
the client. Note that when using this method, it is advisableto use XSLT 1.0 in order to maximize the number
of clients capable of executing the XSLT code.

Nottingham & Wilde Standards Track [Page 16]

RFC 7807 Problem Details March 2016

Appendix B. Using Problem Detailswith Other Formats

In some situations, it can be advantageous to embed problem details in formats other than those described
here. For example, an API that usesHTML [W3C.REC-html|5-20141028] might want to also use HTML for
expressing its problem details.

Problem details can be embedded in other formats either by encapsulating one of the existing seriaizations
(JSON or XML) into that format or by translating the model of a problem detail (as specified in Section 3) into
the format's conventions.

For example, in HTML, a problem could be embedded by encapsulating JSON in a script tag:

<script type="application/probl emtjson">
{
"type": "https://exanpl e.com probs/out-of-credit",
"title": "You do not have enough credit.",
"detail": "Your current balance is 30, but that costs 50.",
"instance": "/account/ 12345/ nsgs/ abc",
"bal ance": 30,
"accounts": ["/account/12345",
"/account/67890"]
}
</script>

or by inventing a mapping into RDFa [W3C.REC-rdfa-core-20130822] .

This specification does not make specific recommendations regarding embedding problem details in other

formats; the appropriate way to embed them depends both upon the format in use and application of that
format.

Nottingham & Wilde Standards Track [Page 17]

RFC 7807 Problem Details March 2016

Acknowledgements

The authors would like to thank Jan Algermissen, Subbu Allamaraju, Mike Amundsen, Roy Fielding, Eran
Hammer, Sam Johnston, Mike McCall, Julian Reschke, and James Snell for review of this specification.

Nottingham & Wilde Standards Track [Page 18]

Authors Addresses

Mark Nottingham
Akamai

EMail: mnot@mnot.net
URI: https://www.mnot.net/

Erik Wilde
EMail: erik.wilde@dret.net
URI: http://dret.net/netdret/

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:erik.wilde@dret.net
http://dret.net/netdret/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	2 Requirements
	3 The Problem Details JSON Object
	3.1 Members of a Problem Details Object
	3.2 Extension Members

	4 Defining New Problem Types
	4.1 Example
	4.2 Predefined Problem Types

	5 Security Considerations
	6 IANA Considerations
	6.1 application/problem+json
	6.2 application/problem+xml

	7 References
	7.1 Normative References
	7.2 Informative References

	Appendix A HTTP Problems and XML
	Appendix B Using Problem Details with Other Formats
	Acknowledgements
	Authors' Addresses

